Decontamination

November 2022

University Health & Safety

Welcome to the Introductory Training about Decontamination

University Health & Safety

Outline

- Decontamination
 - Definitions
 - Categories
 - Prep Work
 - Methods
 - Physical
 - Chemical
 - Gases
 - Questions?

"A procedure or process that renders an area safe for occupancy or material or equipment safe to handle or use."

University Health & Safety

INIVERSITY OF MINNESOTA Driven to Discover®

- Antisepsis:
 - Is the disinfection of living tissues; achieved through the use of antiseptics.
 - The objective is to prevent sepsis, either by destroying potentially infectious organisms or by inhibiting their growth and multiplication.
 - No sporicidal activity is implied.

- Sanitization:
 - Reduces a microbial population to levels considered safe by public health standards
 - Objects usually cleaned as well as partially disinfected
- e.g. sanitizers are used to clean restaurant utensils and these do not have to be sterilized before use

• Disinfection:

- killing, inhibition or removal of microorganisms that may cause disease or compromise the integrity of equipment
- Usually accomplished with chemical agents
- Does not necessarily sterilize objects (some spores & microorganisms remain)

• Sterilization:

- Use of a physical or chemical procedure to destroy *all* microbial life, including algae, bacteria, fungi, protozoa, viruses, dormant endospores, prions and poorly characterized agents such as viroids.
- Sterilization requires verification of the process before sterility is assumed.

- Categories of decontamination in the microbiology lab:
 - Surface decontamination
 - Waste decontamination
 - Space decontamination

- Surface decontamination: Why?
 - Daily clean-up of work area
 - Decontamination of any spills
- Common Methods
 - Liquid disinfectants most commonly used

- Waste decontamination: Why?
 - To protect workers who handle lab waste away from the lab
 - To protect the environment
 - Common Methods
 - Autoclaving
 - Liquid disinfectants
 - Incineration

University Health & Safety

Alkaline hydrolysis

- Space decontamination:
 - Large areas with inaccessible surfaces
 - BSL-3 labs
- Common Methods
 - Requires use of fumigants such as formaldehyde
 - Vaporous hydrogen peroxide (VHP)
 - Chlorine dioxide

Decontamination Prep Work

- Written procedures are required to ensure best management practices.
 - Establish procedures based on current needs, equipment and disinfectants.
 - Research laboratories all use some form of disinfecting.
- Often cleaning procedures are not in place.
 - When unwritten, cleaning procedures are passed on verbally or guessed at based on experience with other cleaning chemicals and potentially mistaken assumptions.
 - Write, review, update and refer to SOP's (Standard Operating Procedures) regularly.
- Find helpful templates here: <u>Fact Sheets and Templates</u>

Decontamination Prep Work

- Risk Assessment:
 - Risk assessment needs to include what products and tools should be used, when to use them and how to use them.
 - Consider the following information when writing a disinfection procedure.
 - Product Label and efficacy data
 - Organism(s)
 - Resistance profile
 - Contact time required for efficacy
 - Training requirements to use chosen method safely

Examples of Relative Resistance of Microorganisms

	Microbe	Examples
More Resistant		
	Bacterial Spores	Bacillus subtilus
	Mycobacteria	Mycobaterium tuberculosis
	Hydrophilic Viruses (non lipid, non enveloped)	Rhinovirus
	Fungi	Candida
	Vegetative bacteria	Streptococcus pneumonia
	Lipophilic Viruses(lipid containing enveloped)	Herpes Simplex
Least Resistant		

University Health & Safety

- Decontamination can be achieved by:
 - Physical methods (heat, filtration, radiation)
 - Chemical disinfectants
 - Gases

- Read the Label:
 - Review the labels of your current disinfectants.
 - Do these solutions match the profile of the microbes you need to kill?
 - The labels of concentrated disinfectants state the proper level of dilution for maximum effectiveness.

- Selection of decontamination method:
 - type of organism/number
 - Amount of organic material present
 - Its risk group or containment level classification
 - The reason for the decontamination
 - Degree of microbial killing required

- Selection of decontamination method (cont'd):
 - The nature of item/surface to be treated
 - Type & concentration of disinfectant
 - Time/temperature of exposure
 - Safety

- Physical agents:
 - Heat
 - Filtration
 - Radiation (UV & gamma)

University Health & Safety

- Heat:
 - Moist steam (autoclaves, renderer)
 - Dry convection oven
 - Incineration

- Heat: Steam sterilization (autoclaves) (cont'd)-
 - Ensure proper functioning of autoclave
 - Load test to be carried out to determine standard load times/temps.
 - Vessels should be loosely capped or plugged
- Verification
 - Biological indicators
 - Thermocouples
 - Chemical integrators

Example of an autoclave

University Health & Safety

This really should not happen, but it does!

University Health & Safety

Autoclave "Do's

- Do test autoclaves monthly
- Do use autoclave bags
- Do loosely close the bag
- All autoclave users must be trained before they use an autoclave!!!

Autoclave "Don'ts

- Do not tightly close the autoclave bag
- Do not use foil caps on bottles use vented caps or loosely capped bottles
- Do not overfill the bag (less than 3/4 full)
- Do not use an autoclave without training

Autoclaving Resources

- Biological Waste Disposal Table
- <u>Autoclaves</u>
- Biohazardous and Infectious Waste
- And LOTS more on the Biosafety and Occupational Health website!

- Heat: Steam sterilization (renderer/ biowaste cooker) –
 - used for solid waste or liquid effluent
 - secondary waste treatment method for BSL3 and ABSL3

- Heat: Dry heat sterilization (oven) -
 - Used for glassware*, metal instruments etc.
 - Denaturation of proteins: 160 170°C/2-4h
- Do not use plastic coated racks, plastic test tubes, Nalgene ware etc.

- Filtration:
 - Used for heat-sensitive material, e.g. pharmaceuticals, culture media, antibiotics, HEPES buffer, etc.
 - Synthetic membrane filters $0.2\mu m$ diameter pores
 - HEPA filters remove 99.99% of $0.3\mu m$ particles from the air

- Radiation:
 - UV lamps- do not penetrate glass, dirt, films, water & other substances very effectively; effectiveness drops off quickly as number of lamp hours increases
 - Gamma radiation used for cold sterilization of antibiotics, sutures, pathogens coming out of containment labs, etc.

- Chemical: Used for:
 - Decontamination of surfaces & equipment that cannot be autoclaved
 - Clean-up of infectious spills, rooms & animal cubicles

- Factors influencing the effectiveness of chemical disinfection:
 - Number of microorganisms present
 - Type of population of microorganisms
 - Concentration & nature of disinfectant
 - Length of treatment
 - Environmental factors

- Microorganisms differ in their resistance to chemical disinfection:
 - High Resistance: spore forming organisms
 - Moderate Resistance: protozoan cysts, Hepatitis B, poliovirus, M. tuberculosis, S. aureus, Pseudomonas
 - Least Resistance: most bacteria, yeasts

- Chemical disinfectants should be:
 - Effective against a wide variety of infectious agents at high dilution & in presence of organic matter
 - Toxic for the infectious agent but not toxic to people
 - Non-corrosive for common materials

- Chemical disinfectants should be (cont'd):
 - Stable upon storage
 - Odorless or ideally with a pleasant odor
 - Soluble in water & fats for penetration into pathogens
 - Inexpensive

- Types of chemical disinfectants:
 - Phenolics
 - Alcohols
 - Halogens
 - Quaternary ammonium compounds
 - Aldehydes
 - Gases

- Phenolics:
 - First widely used disinfectant used today
 - Active against tuberculosis; effective in presence of organic material
 - Remains active on surfaces long after application
 - Disagreeable odor & can cause skin irritation & allergies
 - e.g. Lysol

- Alcohols:
 - Kill bacteria, fungi & some lipid- containing viruses but not spores
 - Ethanol & isopropanol (70% concentration)

- Halogens:
 - Iodine can be used as a skin disinfectant & in lab (e.g. Wescodyne, Betadine)
 - Bromine used instead of chlorine in hot tubs
 - Chlorine (sodium hypochlorite) kills live bacteria & fungi, moderately effective against spores
 - Inactivated by organic material
- Use 1/9 (v/v) dilution of household bleach (100 ml household bleach/900 ml water)

- Quaternary Ammonium Compounds:
 - Actual detergents, not soaps
 - Cationic detergents kill most bacteria but not M. tuberculosis or spores
 - Stable, non-toxic but inactivated by hard water

- Aldehydes:
 - Active against spores; used as a chemical sterilant
 - Formaldehyde widely used to sterilize lab spaces & BSCs
 - 2% glutaraldehyde (e.g. Cidex); much less irritating than formaldehyde
 - Used to disinfect hospital & lab equipment

• Types of chemical disinfectants:

Biocide	Concn (mg/liter)	
	Sporistatic	Sporicidal
Benzalkonium chloride	5	b
Chlorhexidine	1	-
Ethanol	700	
Sodium hypochlorite	1	100
Phenol	500	
Hydrogen peroxide	500	50,000
Peracetic acid	10	100
Glutaraldehyde	50	10,000
Formaldehyde	500	20,000

University Health & Safety

- Gases:
 - Ethylene oxide kills both living bacteria & spores
 - Penetrates packing material
 - Vaporous hydrogen peroxide (VHP) used to decontaminate BSCs & sealed containment labs
 - Chlorine dioxide gas

- Write your Standard Operating Procedure (SOP)
 - Once the work of selecting a method and procedure is done, write it up, train staff on it and keep it up to date

Decontamination Emergency

- Small spill:
 - Put on gloves
 - Cover the spill with paper towels
 - Soak the towels with 1:9 (v/v) household bleach solution
 - Wait 30 min.
 - Clean up towels and discard.
 - 2nd Treatment with 1:9 (v/v) bleach
 - Remove gloves, wash hands.
- Large Spill:
 - Call Biosafety and Occupational Health (BOHD) 612-626-5008.
 - Request assistance.

Resources for Choosing a Disinfectant

• **Decontamination and Disinfection**

University Health & Safety

UNIVERSITY OF MINNESOTA Driven to Discover®

Decontamination Management Best Practices

Management of microbial contaminants:

- Use best practices to protect patients, employees and the environment.
 - Because disinfectants are designed to kill cellular organisms, they are toxic and it is important to follow the instructions on the label.
 - Most chemicals used as disinfectants are corrosive, irritants and potentially carcinogenic.
 - Use only the amount of disinfectant necessary to effectively decontaminate.

Decontamination

- Be Safe
- Use good microbiological practices and good hygiene!
- Disinfectants DO NOT replace good microbiological practices or good hygiene!

Thank you!

Questions: Contact Biosafety 621-626-6002 uhs@umn.edu

University Health and Safety

University Health & Safety

